
I~~
’
AD—AO71 155 STATE UNIV OF NEW YORK AT BUFFALO DEPT OF ELECTRICAL ——ETC F

~ G 12/j iiEXTRAPOLATION AND SPECTRAL ESTIMATION TECHNIQUES FOR DISCRETE T——ETC (U)
MAY 79 A K .JAIN. S RANGANATH F30602—75—C—0122UNCLASSIFIED RADC —TR—7 9—12’e NL

a _ 
A



F 
H 

__ [EVEi~~~~~~~~~~

:~ ~~~~~~~
.
~~ — 4 Msy 1~7~

~ C) . EXTRAPOLATION AND SPECTRAL
ESTIMATION TECHNIQUES FOR
DISCRETE TIME SI~~$ALS

1 
. 

K :

w
-J

J
~~

• ;
~~~~ROMI AIR DSVILOPMINT .C$NT

Air Porc $ystsms Comrn.uid
rIMu Air Perc Ias Nsw York 13441

79 07 1Z OOS
4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  

-

~~~~~~

- 

-



TII~ I~~~TT 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~

~~~is isport bis b~~ ~~ tuM*_by ~~~ *~~~~~~~. 1if0*~~tiOS Off *0* (01) ~
is r , W ’  to t o  I$tlC0*L ~~~~ 44*i 1$fSt tt0* $St?*OS (RTZI). At 111$
it viii bs pllrns lbis to ~~. .ssrs1 ~~ 11*, 1*ci.I *0 f.vsi Mtlm ..

~~
. b.~~ .~~ ~. ., &-.

NDL VA*~~L’bI..Pvojsct ~~ 4~c4r

~~~~~~~~‘ .c~ ~~ 
_

1 LWIU, Coi.0*1, UW

~~tsf, Wmvs111~~ s 01,15*0* _ _ _

pci ~~~~~~~ ~9 4~~ _
~
7•joøp. siu

Mt1a~ ~~1sf, 11 Offics 
_ _ _ _

it ~~~ .ars.s bis c s ~ or if p~~ wish to as rmassd ft.. ~~ M1C 
______

cstii~ ltst . or if tbi ~Mrssu’ 1. ~~ is~~ r ~~~m~vi is ,~~ st~~ 1~~’
dos, pics.. ~~tify $&X (XII) OtiS ft . .  £fl It I3MI. ~~s will csØ,t 

________

vi 1* vii*t.ISII S S 0*U1~~ list.

II sot röt~~R this .~~~. 1*1.5* or.•~s.troy.



______ 
-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

•?
~? 

~~~~~~~~~~~~ -~~~~

—
. 

— — :~-~ 
-
~~~~ ,

______ ~
y

V ~~~~~~

MISSION 
-r q-

Rome Air Development Center
- — ml~ vr~ts4 4têos*4~, devsfop.esit, *4~t
~ *W.tsd .mqsLaLtio * ~~~o$~~~~ 4* 4~~~S~ o~ &vind. Cositc*L
~~~~~ui4.ut(oos mi~ liit sW ..ee (C’I ) 0*t(.~LtLu. Tsekisic4
a si iimNILi~ iusp*t (

~~(* Moss o~ £eahsiuZ to~~~~~dt44 Pt4’4411 Li UO 
~~~~ 

O~4Lc~ (P 0*) .i~~ oU~m UP
ttcisat ~. V~I~~~~ 4pSt ~~c**Lcd *~&4~*1 M0*5 Ml
scs~.niam4~e,~~ e~~~~.-~~~tAe .ii4~~vio i~~ u*~ .L, ~st-
vsLUams o~ itss.~ ma~ as~.e~ u sb/eels, LatlWj ssei d.*.
cslZ LLo* m~~ ~~~~~~ £s . *  £sek..tq~,eoZ~d e~~~
~~~~ * .~ ~~A.f r4W , ~~~~~~~~~ ~~—~~~~~ 

-it

—

‘

~~~~~-~~~~ 
-~

7

______________________________________________________________________ - .-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--- -



UNCLASSIFIED
SECURITY CLASSIFICAT ION OF THIS PAGE (W31..’ 0.,. Enf.,.d) 

_____________________________________

/ / REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REP0R’I NUMBER 2. GOVT ACC ESSION NO. 3. —~~ECIPIENT ’S CATALOG NUMBER

RADC-TR-79-124 / 
_________________________

- 4 TITLE (avid SaabtIU.) 13. TYPE OF REPORT A PERIOD COVERED
- - - - . \  Phase~~~~~~t,~~ 

- 

~~1
L $XTRAPOLATtON AND ~1’FCTR.AL ESTIMATIO$ TECHNIQUES ) ~l7 May’ ~~~~~~~~~~~~ 30 0ct1....~~1J7~ , /

FOR DISCRETE TIME SIGNALS ~~~~~~~~~~~~~~~ .J 6 - PERFORMING ORG. ~ EPORT NUMBER - -—

-- N/A
S. CONT RACT OR GWAN T NUM BE R( . )

/ (~ Anil K./Jain
/ Surendra/ 1~anganath~~ / / ‘) F30602_75_C_0122J ~

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , TASK

~~~~~~~ y-~r-cm~~~ *a -

Departhent. of Electrical Engineering . 6~~Q~F / 1 /
~ewf s Ck 95616 - - j~2T 4~~~ J~lP2 - -

II . CONTROLLING OFFICE NAME AND ADDRESS 12 . REPORT DATE

j f ~~~May i~79
Rome Air Development Center (OCTS) - 

I 13. NUMBER OF PAGES

Gri f f i s s  AFB NY 13441 102
14 MONITORING AGENCY NAME B ADDR ESS(S I dilM,.n i from Co.ifrotlln4 OffIce) IS. SECURITY CLASS.  (of Ihi. cepo fl)

Same 
- /-~j (~:-- , UNCLASSIFIED

- — l5~~ D E C L A S S I F I C A T I O N  D OW N G R A D I N G  
—

SCHEDULE
______________________________________________ N/A
IA . DISTHIBUTION STATEMENT (of 1kb R.pocl)

Approved for public release; distribution unlimited .

I?. DISTRIBUTION S T A T E M E N T  (of lb. .b.tc.yt •nl.,.d Sn StOck 20, II dIff.,m,l from R.po,l)

Same

IS. S U P P L E M E N TA RY  NOTES

RADC Project Engineer: Paul VanEtten (OCTS)
a This phase report is the final report of this effort under a multi—effort

Post Doctoral Program. Research also supported in part by the Army Research
Office under grant No. DAAG~~~~8—A—O2O6 .

IS K EY WORDS (COoIIflaa• on rOod .. .ido I f  necI•Oa’) .,d bd.nIl?y by block n.m,b.,)

Signal Processing
Spectrum Estimation
Extrapolation

20 &I ST RA CT  (Contlec.. on ,.oe,00 aId. If n.c...avv avid d.nlIf y by bloob nomb•,)

~~~~~~~~ This report considers spectral estimation and extrapolation techniques
P for discre time, band limited signals, (i.e., signals whose bandwidth is

less than cycles; if T sec. is the sampling interval) which are observable
only for a m ite duration. The objective is to determine the spectrum
(or power spectrum) of these signals. It is shown that the estimated spectrum
can be improved considerably (over a periodogram or Maximum entropy spectrum)
by first extrapolating the given observations beyond the observation interval.

• Also, we consider the probl. of extra.nolation of aisnal in the Drasanca of -‘~~~~~~~ ~~~~~
‘-t.~~

~~~~ FORM ir, j
V~~ I JA N ?) ‘s” UNCLASSIFIED

SECURITY CLASSIF ICA T ION OF THIS PAGE rW’i.n 1).,. EnI.r.d)

~~~~~~~ 

‘l -- -
~~~A .  -- .— -•-•~.- . -~~~



- - - - - - — - - --—- --- -— —.~~~~~~~~~~~~~~~ •~~~~~ --

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(*bav. Data Enfarad)

noise or other interfering signals.

Several new results and algorithms are presented . First, it is shown
that some of the existing extrapolation methods for continuous signals when
extended to sampled data do not converge to the exact original time—unlimited
signal. Rather, one only expects to get a minimum norm least squares estimate.
And , we find that Papoulis’[ 8] iterative extrapolation algorithm is a special
case of a gradient algorithm with linear convergence. It is shown that an
infinite extrapolation matrix introduced in [10] does not exist and is ill—
conditioned at best when approximated to a finite matrix . The new extrapola-
tion algorithms include a discrete prolate spheroidal wave function (PSWF)
expansion, a conjugate gradient iterative algorithm, a mean square extrapola-
tion filter and a recursive Kalman filter type extrapolator.~ The latter two
algorithms also consider the noise statistics in extrapolatiJçs of the signal.
Several examples are given and comparisons are made . \

\i~~:::J~~..I

- 
- I

~~~ 
—

~~~ -‘
.
.. ~ - 

-
~~ ~- -. —- —

I 4 - r 

• 

~~ ‘ 
— 

•• -

t ~~~~~~~ ~~~~~~~~~

\Dlst 5pe~~al

H ~~~~~J~~~•]_
_ _ _ _

UNCLASSIFIED

SECURITY CLASSIFIC ATION OF THIS PA0CS’WSbsvi Dale tsfav.4)

~~~ ~
‘
.• .~~~~ I ’ 

* 
. 

- 
, 

—-

~~~~~~ 

. ‘-~~~~ t~~~ -’~
; , .—

•- •
~ : ~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - -

.I~~~~~ I~~ - .~- ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- _____



_ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --- - -
~~~

-
~~~~~~~~

ACKNOWLEDGMENT

The work reported here was performed in part at the State University
/

— -of New York at Buffalo under a contract from Rome Air Development Center~ I
Griffiss Air Base, Rome , New York . It is a pleasure to acknowledge the

support of RADC and In particular the efforts of Mr. Paul Van Etten In

various phases of this project. A portion of this work was performed under the

sponsorship of Army Research Office , Dur ham , North Carolina , under grant

No. DAAG29-78-A-0206.

_ _ 
_ _ _ _ _ _  

_ I
tI. - - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ _____________ -~~ J



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- -•-— -

~~~~

- 

I
TABLE OF CONTENTS

LI ST OF FI GURES 4
I. INTReDUCTION 6

II. THE MAXIMUM ENTROPY METHOD 8

III. EXTRAPOLATION OF BANDLIMITED SIGNALS 16

3.1 CONTINUOUS TIME SIGNALS 16

3.2 EXTENSION TO DISCRETE TIME SIGNALS 19

IV . EXTRAPOLAT ION OF DISCRETE TIME , BANDLIMITED SIGNALS 22

4.1 DEFINITIONS 22

4.2 PROPERTIES OF L 25

4.3 ITERATIVE EXTRAPOLATION 28

4.4 THE EXTRAPOLAT ION MATRIX 33

4.5 THE GENERALIZED INVERSE 36

4.6 DISCRETE PROLATE SPHEROIDAL WAVE FUNCTIONS AND SINGULAR 37
VALUE EXPANSION

V. A CONJUGATE GRADIENT ALGORITHM FOR SIGNAL EXTRAPOLATION 43

VI . A MEAN SQUARE EXTRAPOLATIN G FILTER 48

VI I. A RECURSIVE EXTRA POLATION ALGORITHM 50
VI II. EXAMPLES, RESULTS AND COMPARISONS 54

IX. CONCLUSIONS 96
$ X. BIBLIOGRAPHY 101

S

I

L I 
— • d ~~~ .

- 
~°
‘.
‘ •°~~~~~~~~~° ‘ - : S.

,

~~~~~~~~~~~~~~~~~~~~~~~~
- • • • .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-4-

List of Figures

Figure Number Description

la. Spectra of Signal , Clutte r and Noise

lb . Actual Clutter

lc. Actual Signal

id. 17 Samples of Clutter + Signal + Noise

le. Max Entropy Estimate Corresponding to ld (8th order model )

if. 256 pt. Power Spectrum of (ld) by FFT

1g . Signal Extrapolated by Conjugate Gradient Algorithm

lh . Signal Extrapolated by M.S. Extrapolation Filter

ii . Clutter Extrapolated by Conjugate Gradient Al gori thm

ii. Clutter Extrapolated by M.S. Extrapolation Filter

1k . Max Entropy Spectrum of (ig) (15th order model)

11. Max Entropy Spectrum of (lh) (15th order model)

lm. Max Entropy Spectrum of (ii) (15th order model )

in . Max Entropy Spectrum of (lj) (15th order model )
- 

1 2a. Spectra of Signal and Clutter

2b. 256 pt. Power Spectrum of Observations by FFT

2c. Max Entropy Spectrum of Observations by an 8th Order Model

2d. Max Entropy Spectrum of Signal Extrapolated to 125 pts . (Ex 2)

2e. Max Entropy Spectrum of Clutter Extrapolated to 125 pts. (Ex 2)

3,4,5,6,7,8,9,10 Original Signal
a

3,4,5,6,7,8,9,10 Given Observations (17 Samples)
b

3,4,5,6,7,8,9,10 Signal Extrapolated by Papoulis ’ Iterative Algorithm
c

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ Si -- ~~~~~~~~~~~~~~~~~~~~ 

-



~~~--—- - ~~~~----~~~~~~~~~~~~ -~~~~ —

-5—

Figure Description

3,4,5,6,7,8,9,10 Signal Extrapolated Via Matrix Ecd

3,4,5,6,7,8,9,10 Signal Extrapolated After Adding a Stabilizing
e Diagonal Term to Matrix E

~
3,4,5,6,7,8,9,10 Signal Extrapolated by Conjugate Gradient Algorithm

f

9,10 Signal Extrapol ated by M.S. Extrapolation Fi lter
9

11 A(f) vs. f

4

H
V 

_ _ _ _ _ _ _ _ _ _ _

-- - -7 ~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___ ________



— •- --. — —,‘ —.-- —•--•-- .- — —
F - -

-6-

I. INTRODUCTION

Spectral estimation refers to the problem of estimating the spectral

density function of a stationary random signal which is Observable only .

over a finite duration. For a deterministic signal it implies estimation

of its magnitude spectrum. In either case, if the signal were known over

the infinite interval , the Fourier transform of the si gnal or its auto-

correlation would immediately yield the spectrum . Thus , any estimated spectrum

-r is equivalent to specifying the si gnal or its autocorrel~tion outside the

observation interval--i.e., its extrapolation .

In this report we consider several algorithms for extrapolal ion and

spectral estimation of discrete time signals. First , we~ briefly review

the maximum entropy (ME) or the linear predictive autoregressive (AR)

method , and some iterative and matrix inverse based extrapolation

algorithms developed recently by Papoulis [8], Sabri and Steenaart [10],

and Cadzow [11].

The new results presenter1 here are as follows .

1) Papoulis ’ iterative algorithm applied in discrete time domain converges

to an extrapolated signal which is a minimum norm least squares

type sol ution . It is seen to be a special case of a one step gradient

algori thm, and has linear convergence . The convergence of this can

be improved by suitably modifying it to a steepest descent algorithm .

2) Sabri and Steenaart [10) have reformulated Papoulis ’ iterative algorithm

in tern5 of an extrapolation matri x operator E~ which yields the

extrapol ated signal when it operates on the given time truncated

signal . It is proven that the infinite operator , E11, does not exist ,

but its finite truncation EN exists , but it is ill-condit ioned .

— ;~•_ -- 
—
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3) It is known that a continuous (time) band limited signal given over

a finite observati on interval can be extrapolated exactly outside this

interval by means of Prolate Spheroidal Wave Functions (PSWF). We 
—

show that for the discrete time case a similar expansion arises when

we consider the minimum norm least squares extrapolation .

Then we present three other algorithms which are as follows :

4) Conjugate Gradient Iterative Extrapolation

5) Minimum Mean Square Extrapolation Filter

6) Recursive Least Squares Extrapolation Fi l ter

The conjugate gradient method is an iterative algorithm which yields

a psuedo inverse extrapolation operator. Compared to the earlier iterative

methods [8-11], this algorithm converges quite rapidly. The minimum mean

square extrapolation algorithm is designed for applications where the

observed band limi ted signal is contaminated by wideband white noise. It

yields a simple, Wiener fi l ter type, extrapolation operator which requires

invers ion of a matrix whose size is equal to the number of samples in

the observed signal . No iterations are required here and the algori thm

is shown to reduce to the matrix inverse al gorithm of Cadzow [11)

as the additive noise power goes to zero. Finally, the recursive

least squares algorithm is a Kalman filter based method where the

extrapolated signal estimate is updated recursively as a new observation

sample arrives . The latter two methods are applicable in the presence

of noise and yield stable results . Finally these algorithms are shown to

be applicable to problems where one needs to discriminate as well as

extrapolate an Interfering signa l and a desired signal.

Several examples are considered to compare the vari ous algori thms .

I 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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II. THE MAXI MUM ENTROPY METHOD [2-7]

Let {u1} denote a real
, zero mean , stationary , Gaussian random

process whose covariance function is defined as

rm 
= E [u juj+m]. 

(1)

We know rm only on a 
finite window W defined as

W = {-p<m~p} . 
(2)

The maximum entropy method extrapolates rm outside 
W by max imizing the

entropy
1/2

c 
~ J 2nS(f)df (3)

-1/2

under the constraint

rm = f 
/
S(f)e32~

mfdf , meW . (4)

-1/2 
-

The solution gives the maximum entropy spectrum as

5(f) 
~~~ a e

j2
~~

m] 
8m 

= a m . (5)

me W  m

This coul d be written as

2
S(f) = 

[
~~~ e

_i
~~~mf~ 

(6)

where the am and are related by

min(p-m ,m)

a_rn = am 
= ak+mczk . (7)

k=max [O ,-m]

The coefficients {ct
m

} are determined by solving (4) and (6) which is equivalent

to solving (9) below . Alternative ly, the fu 1 } could be characteized as an AR process

uk = c
~fl

Uk_ f l  + 
~ k 

(8)
n 1

L ~~~~~~~~~~ 
•

-~~~--- 
__ -ii - _ _ __ ._ _—-i__.___ —----••-- -—— —  -— - - 
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where ~2 = E[ck
2). By writing the Yule-Walker equations for (8) it is a

simple matter to show that ~
czm} are obtained by solving a set of simultaneous

linear equations *

2~ 2 —Ru -8 , B — u ,
~~ ” 

~

O

O

cx
O

where ~ and 1 are (p+l ) x 1 vectors and R is a (p+l ) x (p+l ) covariance

matrix wi th entries corresponding to covariances on the window W , i.e.,

r0 r1 r

R =

r~ - . - r1 r0

~For a positive definite matrix R , ~
cxm} are guaranteed to be such that 

5(f)

is positive and (8) is asymptotically, a stationary random process .

0. 
— .- - .. . — 

I -

:j~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Strictly speaking , the covariance values (rm . m € W I should be known

exactly. In practice , one only knows data val ues on a finite window .

Then , the covariances could be estimated as*

rm M k~l 
UkUk+I I 

, meW (10)

where M is the size of the data window . For large M >> p, reasonable

estimates of {r~~could be expected.

Note that this method does not require fu~) to be ban dlimited (with

respect to the Nyquist rate). Al so, the spectral density function is , in

view of (5) and (6), an all pole model. Thus , if the given observations

were of the form

Yk Uk + f l k (11)

where nk is a white noise process or another signal (e.g. clutter noise

which could be modeled by an AR process), the spectrum of would not

be an all pole model and may have to be approximated by a very high

order all pole model .

Example l~~j:~ Although there are man y examples where the maximum entropy

method could be applied successfully [3,5,7] we consider a case where

it does not. We assume the observations to be given by

= Sk + Ck + “k (12)

where 5k represents a bandlim i ted signal whose spectrum lies in the

interval [f2,f3] and [-f2,-f3] and Ck is an interference signal band-

limited In the interval [-f1,f1 ] and 
~k 

is a whi te noise process.

*10 estimating rm . the divisor of M , rather than M-Imj is reconinended.
Al though this results in a biased estimate of rm , It yields a positive

definite sequence (rm} so that R is positive definite and the resulting
spectra is positive . S~”e Parzen [15] for details.

~~~~~~~ - -  -

- ~~~~~~~~ J T  L
~~~L. -~~~~

-
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Figure 1(a) shows the spectra of the various signals. Figure 1(b) and 1(c)

show the interference signal ck and the actual signal 5k’ modeled as

- S
k 

= 1.69 Sin(.3971k).

Figure 1(d) shows the 17 samples of the available observations .

The signal to interference signal (to be called clutter) ratio , which

is defined as

SCR* - 20 1 Peak to Peak Value of Signal (13)- 0910 r.m.s. val ue of clutter ‘

is -4.1 dB and the signal to noise ratio , SNR , defined similarly is 19 dB.

Figure 1(e) shows the maximum entropy spectrum estimate. A peak is

expected at the position marked by the arrow . At this point the signal

estimate is 30 dB below the clutter peak and is indistinguishable from

the interfering signal . Figure 1(f) shows the spectrum estimated by

directly evaluating the Fourier spectrum (i.e. the periodogram) as

8 2
5(f) = 

17 k_~_8
k , - < f < (14)

Equation (14) can be evaluated approximately by discretizing the variable

f and using a fast Fourier transform algorithm. The spectrum of Figure 1(f)

is the result of a 256 point FFT. We note that both of these estimates

are unsatisfactory .* We will see that the new algori thms introduced here

improve the estimated signal spectrum considerably.

*Note that for random signals , the periodogram is an inconsistent estimate.
Windowing techniques may be used to improve the spectrum estimate In the
sense that it would be a consistent estimate of a smoothed version of the
original spectrum. In this example , windowing did not improve the situation
in so far as the signa l was concerned.

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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,..— clutter spectrum

signal band limits

.j_
_ si

~nai _ _~,,_noise power spectrum
.l6ir

(A)

Fig. la: Spectra of Si gnal , Clutter and Noise
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III. EXTRAPOLATION OF BANDLIMITED SIGNALS

3.1 Continuous Time Signals

Suppose we have a continuous , band limi ted function f(t) so that its

Fourier transform satisfies

F(w) = 0 for ~~~ > a . (15)

Let g0(t) be a time limited segment of f(t) which is available as a

noise-free observation , viz.,

f(t) , It ! < T

g0(t) = (16)

0 -
, It ! > T

The problem is to extrapolate g0(t) outside the interval [-T ,T]. This

is the classical problem of extrapolation of analytic functions. The

existence of a unique solution can be established by observing that

band limi tedness of f(t) implies it is analytic. This means all its

deri vatives exist and are bounded so that from the Taylor series expansion

2
f(T+~) = f(T) + Af’(T) + ~~

- f”(T) + ... (17)

one can evaluate f(t) outside [-T ,T]. In practice, (17) is not very

useful, because, not only does the series have to be truncated , but also ,

the evaluation of various derivatives is a noise sensitive process. An

alternative algorithm suaqested by Slepian , et al. [14], uses a series

expansion

f(t) = ~ a~4~(t.Ta) (‘.8)
n=O

—a--- —___  — - -
~ 

— —--- — — — _i_• 
•
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where (.~(t.To)) Is a special set of complete orthonormal bandlimi ted

functions, called the prolate-spheroidal wave functions (PSWF), which are

defined for all t. The coefficients {a~) can be evaluated as projections

of the known function g0(t) on the basis functions ~~~ Once {a~} are

known, the right side of (18), consIdered valid for all t,gives the

extrapolated signal . In practice , this method also suffers from noise

limi tations and errors due to truncation of the series . Moreover it

is extremely difficult to accurately generate the basis PSW functions

so that extrapolation In a practical situation is quite hopeless . For a

simole example , see Frleden [19].

Recently, Papoulis [8] has introduced an iterative scheme that appears

to do better than the PSWF expansion method . The algorithm has the

following steps . The first step is to compute the Fourier transform of

g0(t) as G0(w) and define

G (w), wI < 
~

F (w) 0 (19)
1 

- , lw I > 0

Compute f1 (t), the Fourier inverse of F1 (~) and let

f(t) , It I I
g (t) = (20)
1 f1 (t), It ! T

Then compute G1 (- .) = F[g1 (t)].

This is the first step of the iteration . At the nth step form the

function
S

G 1 (w), Iw I < 0

F (~) “ ‘  (21 )
0 , I w I > a  .

a

I~~~~~~~~
. :~i:~~:’~;ii:
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Find F 1 [ F ( w)] and form

f( t) , It ! < T 

-

g (t) = (22)n f~(t) , It ! > I .

Papoulis has theoretically shown that f (t) converges to f(t) as

n -
~ 

. If we define a band-limitin g operator as

Bf(t) = f(t)€)((sinat)/irt) (23)

.4

where (sinat)/irt) represents the impulse response of a low pass filter , and

we define a time -limiting operator as

f(t) , It ! < I
Df(t) = (24)

0 , It ! >

0 = 1  - D

where I = identity operator (25)

then the foregoing al gori thm can be written as [10]

g~(t) = g0(t) + H9n 1 (t)

f1 (t) + Gfn i (t) (26)

H = OB , G = BD

or 
[n- l k 0

= 
I ~ G f1 (t) , G = I

L~~~~~

°

(27)

g (t) = ~ Hk g0(t)n k0

4 
- - - - -

~~~~~~~
---_..

~~~ 
- - --- -

- 4 - - -



_ _ _

-19-

Either g~(t) or f~(t) may be considered as the extrapolated signal .

3.2 Extension to Discrete Time Signals

Sabri and Steenaart [10] have suggested a discrete version of this

algorithm , as follows .

Let y(k) be a discrete, bandlimi ted signal so that its Fourier trans-

form (i.e., Z transform evaluated on the unit circle) defined as

Y(f) = 

~~~~~~~~~~~~~~ 
, - < f ‘C 

~~
- (28)

satisfies the relation*

y(f) = 0 , ~~
- > If !  > a (29)

We are given a set of time limi ted , noise free observation s

y(k) , -M < k < M
g (k)
0 

o , otherwise .

Given {g0(k)}, the 
probl em is to find an estimate of y(k) outside the

interval [-M ,M]. Following section 3.1 , we define infinite vectors

y = [...y(-k). ..y(-l),y(O),y(l),. .. ,y(k).

T
9n 

= ~~~~~~ .g~(_1),g~(0),g~(l),. .. ,g,,(k).. .]

where g0 ~ 
[O,0.,,,0 g0(~M),g0

(..M+1),...,g0(~l),90(O),90
(1),...9Ø (M) ,0,0,...0L

We also define a band-limit ing operator L , and a time-l imiting operator W ,

as infinite matrices

*Thjs Implies y(k) has been oversampled with respect to its Nyqu~st rate.This occurs quite often when a system observes signals over a wide bandwidth .

4 - - -  —

~~~~~~~~~~~

- - --

~~~~~

-- - - -—- -

~~~~~~

- - - -

I
- 

L _ _  - - — ---—-- - ------ 
~

— - - -- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

- 
- 

‘-
~~~~~~~~

-
.~~~~

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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L = , = sinr (i
~
i)o , i ,~ =

(31 )
1 , i=j , - M < i , j < N

W = { w . .} , w.
1 ,J

O , otherwise

Also, let

W =  I - W (32)

The n , one obtains from (27)

~
‘n+l [k~O J l  

(33)

G = L ~i

Defining

n
E ~ (34)n k=0

in the limit as n -
~~~~~~ ,we get

f~ ~~~~~~ 
(35)

where

E = ~ Gk = (I-GY 1 . (36)
k= 0

The matri x E has been called the extrapolation matrix and it exists

If and only if no roots of G equal unity . In iterative form, the algorithm

becomes

f = f  +Gf (37)
n+l 1 n

Li :~~~~~ • . ~~~~~~~~~
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In practice , the infinite matrix operator G is replaced by a finite

matrix , of size , say, NxN where N >> (2M+l). Later in this section we will

show that (I-G) is singular for N = ~, but its finite approximation (P4<oo)

is non singular.

Existence and Convergence

Following Papoulis , it can be shown that the above iterative algorithm

satisfies the inequality

J
IY (f ) - G 1 (f)I

2df > 
J

IY (f) - G~~ (f)I
2df (38)

which says that the mean square error is reduced at each step. However, the

extrapolated signal need not converge to the original signal y(k) because

the t ime limi ted discrete sianal does not have the analyticity property that

the continuous signal has. Indeed , as we show in the next section , the above

(discrete extrapolation ) algorithm converges to a least squares , minim um

norm solution associated with the solution of the equation

WLy

In terms of computational complexity , the iterative algorithm requires

about 4nNlog2N real operations (one operation = one multiplication and one

addition), where N is the size of the extrapolated vector (and is much larger

than M) and n is the number of iterations .

If the extrapolation matrix E.is used, then once it has been computed ,

it requires ~-(2M+l)(N-2M-l) operations to evaluate the extrapolated signal .

However a large (NxN) matrix which Is ill conditioned,has to be inverted .

(see next section)

F a

~1 --
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IV . EXTRAPOLATION OF DISCRE TE TIME , BANDL I MITED SIGNALS

Before proceeding to prove several results related to extrapolation

of discrete signals we fi rst cons i der several definitions . Let A be an

arbitrary mxn matrix and consider the system of equations

Ay = z (39)

where y and z are nxl and mxl vectors respectively.

4.1 Definitions

Definition 1: Least Squares Solution

A least squares solution of (39), denoted by 9, is such that

li z - A 911 2 = (z~A9)
T (z~A9) (40)

is minimum. This solution must therefore satisfy the equation

ATA9 = ATz (41 )

If ATA is nons ingular (i.e. n < m and rank of A is n) then

9 = (ATA) ATz (42)

is the least squares solution and is unique . If m = ii and A is nons ingular ,

then

y = y  = A z  (43)

- _._t_._ _ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~L- .— ---
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If m < n , then ATA is necessarily singular and has rank at most m. Then

(41) does not have a unique solution .

Definition 2: Minimum Norm Least Squares Solution

Let y~ denote this solution . Then must be that solution of (41)

which has the minimum norm H91 1 2. Thus

= min {II9H 2; ATA9 = ATz} (44)
y

Clearly, if rank ATA is n then y~ = 9. The minimum norm is simply

a constraint that makes the least squares solution unique for an arbitrary A.

Definition 3: Pseudo Inverse

We call A~ the pseudo inverse of A [l8], if for every equation (39),

the associated minimum norm least squares solution is given by

+ +y = A z  (45)

This pseudo inverse , also called the generalized inverse , satisfies

the elations

A.A~ =

A~A = (A +A) T

+ 
(46)

AA A = A
A~~ AA~~ = A~

When rank A =

t
4 

________• - —•----——--• — - •——-—_*.__-__-_— • _- --_--.,. ~~~~~~ - - - - 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ —-  -— —- S.

- ~~~ ~~~~- ----~~- . ~~~~ -~~~ -- - ---——
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A~ = (ATA)~
1
AT

If rank A = m , then

= AT (AA T) (48)

Definition 4: Singular Value Expansion [21]

In general an explicit expression for A~, of the type of (47) or (48)

is not available. However , A
4 can be expressed as an expansion . Consider

the eigenv.3l ue problems

ATA~k =

(49)

MT = 
~k~k

where k = 1 ,2,...,p and p is the rank of A. The vectors 
~k 

and ~ ‘ . are of

sizes- nxl and mxl respectively. Since ATA and MT are non-negative matrices ,

these eigen—vectors exist and can be orthonormalized so that

I 
—4k0Q —

(50)

— 
~ k ,9~

From this , one can express the rectangular matrix A by the expansion , called

the singular value expansion , as 

- ---—--_—----- -- -- 

_ _  

- - -  

~:C~~ C- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~• . 
- - ~~~~~~~~~~~~~~~~~~~~~~~ 
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A = 
k!l k k k  (51)

where A k > 0, are called the singular values of A. -

The pseudo inverse A+ can now be written as

p
= 

k=l
’ 
~k~k 

(52)

4.2 P~~perties of L

Now we consider some useful properties of the low pass filter operato’

defined in (31).

Property I: L is a symetric operator , i.e., L = LT. This follows

from its definition .

Property II: The Fourier spectrum of L is given by

1 , 0 < I f I < a
Q ( f )  = (53)

0, otherwise ,

where - < f < ~~
-. This is obvious since L is the Toeplitz matrix

formed by the Fourier i nverse of z(f), the lowpass filter transfer function .

Property III : Let S be a (2M+l )xco matrix operator whose elements

are

1 , i=j=O*l ,*2,...,*M
s. . = (54 )
1 ,3 0, otherwise

Basically S selects (211+1) elements from an infinite vector. Consider

the (2M#1)x (2M+l ) matrix

= SLsT (55)

~~ . - ~~~~~~~~~~~~
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.

~~

Then

= = sin2 (i-i) ; - 11 < ~,j < 11 (56)

A l so

STS = W (57)

S
where W is defined in (31).

Property IV: The operator L is idempotent , i.e.,

L
2 = L (58)

This is obvi ous because ideal low pass filtering a signal once is the

same as doing it twice, i.e.,

Ly = L(Ly )

Note this implies the spectrum (or eigenvalues ) of L must be composed

of zeros and ones only [see (53)].

Property V: For every N < ~, I is positive definite . This follows

by noting

xTLx* = 
~ ~~~~~~ 

= ~ (f e
3 2 m

~~~df)x,~x~

_ _ _ _ _  ___  _ _ _ _ _ _ _ _ _ _  — 

I
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= ~ ~~~~~~~~~
m=-M

~, r0 11
= 

i X11(f) 
2df XM(f) ~ 

x e~
2
~”~ (59)

> 0 , i f M < =

If M = ~, then Xm = e
_32

~
m
~ gives XM(f) = d(f-~) so that

T 1 , RI < a
4 x L x * = x Lx *= (60)

0, Ri > a

and is ,ot positive definite . Thus , all the eigenvalues of L are positive

A ( L )  > 0, 11 < (61)

Property V I: Let A max (L) denote the largest eigenvalue of L. Then

A (L) ~~~~~l , M < ao
max (62)

= 1 , M = ~~

Thus , for any finite M , the eigenvalues of L are bounded in the interval

(0,1) i.e.,

- o < x (L) < 1 , M < (63)

To prove (62) we note

A ~~~~ 
x~~x*max 

~c} x x *

t 

.
‘

.

T1 - ——  — — —-—-~~-- — — -~~~~~~~ - = =.‘~~~~ ~~~~~~~~ 
-

~~~ ~-~=-- A
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From (59) we can write

I
x (L) = max 1/2 (64)

(xm}f ~
XM(f)~~

df
-1/2

Since , for 11 < ~, X11(f) is the Fourier spectrum of a time limi ted signal ,

it cannot be zero on any finite interval . Hence

J
~~~~~XM

( f ) ~~~ df < I IX ~1
( f )

~~

2df , V 11 < ~, a <

or 
~~ 

X 9 m  X < 
m~.11

km I
2
~ 

V M < ~.

When M = ~, one could maximize (64) by choosing a bandlimited 
signal so that

the above inequality will become an equality . This proves (62).

4.3 Iterative Extrapolation

With the above definitions and properties we are now ready to prove

the following results . let y(k), k=0,t1 ,... be a discrete time bandlimi ted

signal as defined Ii (28) and (29).

Furthermore , let this signal be observed without any noise over a

finite i nterval and define

z(k) = y(k), - 11 k 11 (65)

If z denotes a (214+1)xl vector and y is the infinite vector of {y(k)}, then

z = S y

- 

- 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ — 

/

,- ,#=—=~~
_
~~~~~~~~*_~~~~~~~ . I—~~~’~ ~~~~~~~ ..-~-= - .  - -.
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Since y is bandlimi ted, it must satisfy

L y = y

so that we can write

z = SLy (66)

Theorem 1: Minimum Norm Least Squares Extrapolation Theorem

The iterative solution [see (32) to (37) and (57)]

~q+i 
= + Gfq~ q = 1 ,2,...

G = L(I sTs) = L(I—W) (67)

f1 = 1g0 = LS
Tz

converges to the minimum norm least squares solution y~ of (66). Moreover,

(67) is a special case of a gradient algorithm associated with the minimum

norm least squares optimization problem.

Proof: An Iterative gradient algorithm associated with the minimum norm

- - least squares solution of the general equation (39) is

~q+1 = Yq + ~ A
T(z_A yq) (68)

= ~ A
Tz + (I - ~ A

TA)yq (69)

. 

~~~~~~~
• 
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a) 0 < — <  T 
(70)

A (A’A)max

b) The initial guess y0 must lie in the range space of ATA e.g.,y0 
= 0.

From (66), letting

A = S L  (71)

we get

4

A
T
A = L

T
S
T
SL = LWL (72)

ATz = LTS
T = LsTz = f

1 
(73)

Hence (69) becomes

~q+1 
= ~ + Yq - LW 1. Yq (74)

Now letting

y0 = 0

and noting that f1 is band limited i.e.,

Lf1 = f
1 

(75)

It Is easily veri fied by Induction that ~Yq
} is a bandlim i ted sequence i.e.,

1 -

- ~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ __
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LYq = Yq~ q 1 ,2,3... (76)

Using this in (74) we get

1 1= ~ f1 
+ Yq 

- 
~~~ LWYq

= ~ f1 
+ (I - ~~ LW) Y

q 
(77)

For a = 1, (77) becomes the same as (67). Now it remains to show that this

algorithm converges for a = 1. From (70) and (72) this requires us to find

the largest elgenvalue of L!.&. Now

A (LW L ) = A max (ATA) = A (AA T )

= x (SLS
T
)

= A (L)

< 1 , V M < ~~.

where we have used Property VI. Therefore, convergence of (77) is achieved

whenever

0 < 1 < 2 <  2 (78)
A (L)max

Hence for a = 1, (77) converges. This completes the proof of Theorem 1.

An interesting question raised by the foregoing result Is “What is the

optima l value of a?” In other words, we want to find the “steepest descent”

for the gradient algorithm . Defining the error vector at iteration step q as

- - - - - . — -  — .&-_ ‘a.- - . - - - — ---—-—-—----- - - —

S. 

~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~ - ~~~~~~~~~~~~~~~~~~ •
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eq = Y - yq (79)

and noting that f1 can also be written as

f1 = Lg~ = IWy = LWLy (80)

we obtain from (74)

S 
eq+l = (I - ~~LWL )e q (81)

1= (I - ~~
- LWL ) e0, e0 — y (82)

This shows the convergence rate of this extrapolation algorithm is linear.

Slow convergence of this algorithm has also been noted experimentally

by us and by Papoulis [8] and Sabri et al [10]. Since this Is a gradient

algorithm , convergence can be improved by adjusting a at every iteration .

The optimal value is given by

h Th-1 _ q q A - S L  (83)q 
- 

hq
TATAhq 

-

where hq is the gradient at step q, defined as

h AT(z_A y )q q (84)
= f 1

~~~

LWY q

This requires additional computations at every iteration step. If a constant

value of a is desired, it is given by [24] 

_
-i. 

~~~~~

-

. ~-~~~~~~~~~~~ =----~~‘ — • _ _ _ 

- - 
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aopt~ 
= 2/[Amax(LWL) + Xmin %

~
IL))

Since

A 1 (LWL ) = 0

A (LWL ) < 1

we can take

2 ~ (85)

From our foregoing analysis we conclude the fol lowi ng about Papoulis ’

iterative algorithm.

1. The solution converges to a minimum norm least squares solution . Note

that continuous version of the algorithm converges to the original band

limi ted signal y(t), as proven by Papoulis [8). This reinforces the fact

that time limited discrete observations of a band limi ted signal need not

give its exact extrapolation.

2. The algorithm is a gradient algorithm. Hence its convergence is

linear and slow . It could be Improved by going to the steepest descent

algorithm.

4.4 The Extrapolation Matrix

Now we consider the extrapolation matri x suggested by Sabri and Steenaart

[10). ThIs Is the doubly Infinite matrix defined as [see eqns. (32) to (36))

= (I-G)~ (86)

— ~~~~~~~~ -• ._ -

S.

I ~~~~~-

-
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- 
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G = L(I-W)

In a practical situation the matrix G is truncated to a finite , but large ,

NxN matri x , say GN defined as

= L
N

( I
N
_W

N
) (87)

and the corresponding extrapolation matrix is

E
N 

=

We intend to show that for every finite N , EN exists . However , E~, does

not exi st. Thus as N qoes to i nfinity the sequence {EN) becomes an ill-

conditioned set of matrices .

Lema 1: For every finite N , the matrix defined as

= I - L~4 
4

• 
LNWN (88)

is nonsingu lar. At N = 
~
. P~ is singular.

Proof: From Property V , the finite NxN matrix LN is positive definite .

Now consider the syninetric matrix

C A P IN M N
= 1N 

- I
N

2 + L
N
W
N
LN . (89 )

Since all the eigenvalues of LN lie in the interval (0,1) we have

I.
~Li~~- ~~- -~~~~~~~~~~ 

- —
~~~~~~~~ 

-

—~~~ — —~- ~~—— ~~~~~~~~~~~~~~~~~~~ -~ — ~~~~ ‘~~ ~4-~~ -.~- ~~~~~~~~~~~~~
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;k
k

(L
N
) = A k

(L
N) 

< A~~(L~~) (90)

Therefore, for any Nxl vector x ,

T T 2X L NX > X L N X

Also

N
L
N
X* = 

m=~-M n=~-M 
xm~~

2
~xn* > o

where are the (2M+l)x(2M+l ) elements of LN~~ 
which is positive

definite . Clearly, then C
N 

is positive definite . Hence = CNLN
1 exists

and is nonsingular.

At N = 
~
, th is singular. Consi der the eigenvectors of the equation

LWLx = Ax (9la)

Since LWL is symetric and is of rank (211+1), there exists an x such that

LWLx = 0, x ~ 0 (91b)

Moreover , for every such vector there exists a band-limi ted x

Lx = x

which is also a solution of (gla). Thus , for all such x we have

4 1
• -

/

,,~ 
_ _ _ T__ _ _ __ _ i_ _t__ _ _ _ _ _ _ _ _
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xTPx = xTPLX = xTLx - xTL2x + xTLWLX
= ~

T
1~ - XTLX + XTLWLX

= XTLWL X

= 0,

Thus P is singular.

4.5 The Generalized Inverse

Having noted that the foregoing approaches give a min imum norm least

squares solution , one may attempt to find i t  directly. We recall that the

given system of equations is

SLy = z (92)

Defining A = SI to give

M
T = SLL

T
S
T

= 51ST (93)

= 1

We note that I Is positive definite (Property V). Hence from Definition 3 and

Eqn. (48) we can wri te directly A’
~ = A

T (AATT’1 which gives the extrapolation

matrix

E
~ 

= 1T5T(515T)
-l (94 )

and

—— — — -  — — — - - —— __________________________ - — — — -  - —

* S. 

-
~~~~~~~~~ -~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~ -—-i- — - - -  -~~~~~ ~~~~~~~~~~~~~
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+ 
= LTST(SLS

T
)

l
z (95)

This form of sol ution was obtained for the extrapolation problem by Cadzow

[11] by a different route . This method , we believe , is easier and more

direct. We note that while the extrapolation matrix E,,,, did not exist , the

extrapolation matrix Ec exists . Moreover , I is only a (211+l)x(2M+l )

Toeplitz matrix so that its dirnensionality is much smaller. However , as 11

becomes large or for certain combinations of N and a , L could be i ll

conditioned. Experimentally, the i l l  conditioning can be reduced by adding

a smal l diagonal term to L. This , however , will degrade the extrapolated

estimate.

4.6 Discrete Prolate Spheroidal Wave Functions and Singular Value Expansion

In an earlier section we had mentioned that a continuous band -limi ted

signa l could be extrapolat ed outside its observation interval , exactly, via

the PSWF expansion . For the case of discrete signals ,a similar expansion

is possib ’e for the minimum norm least squares extrapolated estimate . This

is achieved via the singular value expansion described in Definition 4.

Papou lis and Bertram [20] have introduced the discrete PSWF earlier for

realization of digital filters whose impulse response is an all-zero model.

However , they have not shown any extrapolati on properties of these PSWFs .

Here we introduce the discrete PSWFs which also extrapolate a discrete

band limited signal (known over a finite duration ) to an infinite , minimum

norm least squares signal

Following Definition 4 for A SI, we consider the eigenvalue problems

--~~~~~~~- 
--
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A
T
A~~

k 
= LW L

~k 
= LSTSL

~k 
A k~kI - M < k -. M (96)

MT
~k = L

~ k 
= SLST~k = A k~k, 

- M < k M (97)

where \ O,and 1
~k~ 

are ~ x 1 and are (2M+l)xl orthogonal vectors i .e.,

T, - -
— - 

k ,c (98 )
=

From (96), :k must be a band-limi ted signal satisfying the condition

L
~~k 

= 
‘k (99)

because : k 
= (h1 k )t

~
(’
~
4
~ :k

)
~ 

and Lz is band lim i ted ,Yz. Now define

= SL
~k 

= S
~k 

(100)

Then (96) gives

LS ~ 
=

‘k k ’k

or

SLST
~~k 

= ‘k~~k 
= A

k~ k 
(101 )

This shows sat isfies the same equation as Hence and ‘k must

be proportional i.e.

9

_ 
_ _
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Using the orthogonality condition (98) and the eqns . (99), (100) and (97)

we find

2 ,Ck = 
k

or ck ‘ k (102)

qiving

- M < k < M  (103)

Also from (96), this yields

= 1 LS
T

_J 

, - N k < 1 1  (104 )

[quat iol (103) states that the (211+1)yl vector ‘k is simply obtained by selecting

the (2M+l) elements 
~~k
(m), - N m M~ of and scaling then by

Eqn. (104) is remarkable in that the -‘xl vector I
~ k 

is obtained by simply low

pass fi l terina the sequence (,k (m)} and scaling the result by A~~
”2. This

means :k ~S the extrapolation of 
~k’ 

obtained by simple low pass fi l tering and

scaling. Also noteworthy is the fact that the sequence (~~(m), - -‘- < m < c.)

is orthogonal over the interva l - N < m < M as well as over the infini te interval .

This property is similar to that of the continuous PSWFs . The (2M+l )xl vectors

are easily obtained by solving the eigenvalue problem of (97) i.e.
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m~-M 
sin2r(n

~
m) 

~k
m = A k~k

(n), - M < n , k < M (105)

Once 
~ k1 are obtained

, 
~~~ 

are given by (104) i.e.,

= 

, m 2-M 
sin2~c(n~m) 

~k
(m), - < n < =‘ (106)

combinin g (105) and (106) we find
- 1 1  ~ n ~z M ,

S
= (107)

- 
m=~M 

L
~
J ,- k(m), otherwise

where - 11 < k ‘- M. The extrapolated signal is obtained by applyin g (52)

as

+ +y = A z

or

+ 
11 aky (m) = 
~ 

—
~

__
~~k

(m) , Ym (108)
k=—M /Ak

where

T 
11 11

ak 
= 4

~k 
z = 

~ ~u
(m)z m = 

~ ~~~~~~~ 
(109 )

m=~M m - M

-T- .T.I~~~~ . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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.

The functions 
~l k

(n)} and have been obtained by Papoulls [20] and are

called the discrete PSWF . However, their usefulness in obtaining minimum norm

least squares extrapolation has not been noted earlier. Our extrapolation

algorithm requires the following steps. First calculate (211+1 ) orthonormalized

vectors (each of size (211+1)) by solving (105). Next obtain the (214+1)

infinite size vectors Pk according to (104) by low pass fi l tering and scaling

of ‘k~ 
Then (108) and (109) give the extrapolated estimate from the observations

- N m < M}.

Properties of Discrete PSWFs: We now sumarize properties of these functions .

1. Let I be a low pass filter operator and C be a (211+l )x(2M+1) principal

minor of it, i.e.

= 
~~~~~~~~ 

= 
2 ’ i-j  

i— j=O ,±l ,...±(2M)

Then the orthonormalized eigenvectors of L , denoted by 
~ 

form a complete

orthonorina l set of bas is functions in (211+1 ) dimensional vector space. Let

k A k~k 
- M < k < M  (110)

A
k 

> 0

2. The discrete PSWF are formed from as cxl vectors and are defined as

- M < k < M  (111)

3. The PSWFs are orthonorma l over the infinite interval , i.e.

- _._LL_. -s-- 
— 

— — —‘—--- - -.-,-..-.- - — —~--~~~~~~. ~~~ ~ .~~~~, -~~~~~~ —-- 
.
~~~~-~~ -—- -‘---~--- — —
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m=~
_co ~k

(m)
~~

(m ) = 
~~~ 

(112)

4. The PSWFs are orthogonal over the finite interval [-M ,M], i.e.,

m~~M 
4k(m)~~

(m) = A k6k z  
(113)

5. The Fourier transform 
~~~~ 

of Lk(m)} satisfies the elgenvalue integral

S equation

a
_______________ = A k~k

(f), fl < o (114)

The proof is obtained by Fourier transformi ng (111) and using (103).

6. The eigenvalues of L lie in the i nterval (0,1) i.e., 0 \
k(L) 

< 1.

7. Let y(m) be a band limited signal whose spectrum lies in the interval

(-a ,a). If y(k) is known over the interval [-M,M], then its minimum norm least

squares extrapolation estimate is given by

+ 
M a k

y (m) = 
~ ~~~~~ 

Ym
k=-M - k (1 15)
11

ak = 
~ 

y(m)
~k(m)m= -11

Note that this gives y
4(m) = y(m) for m e [-M ,M].

So far we have consi dered only the case when there is no noise in the

observed signal. In the next few sections , we consider other algorithms where

additive noise or i nterfering signals are allowed in the observations . The

algorithms reduce to minimum norm least squares solutions In the absence of any

noise.

4 — 

-

- ~~~

- - - ---— —  —- — —_  —

- ~~~~~~~~~~~~~~~~~~~ — .~f__ _
~~~~,__ . ~~~~~~~~~~~~~~~ k~~ —~
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V. A CONJ UGATE GRAD I ENT ALGO RITHM FOR SI GNAL EXTRAPOLATION

In this section we consider a slightly different but more general

problem than that considered in the previous section . We are interested in

extrapolation and discrimination of two interfering signals (see Example 1).

Let us assume that we are given m observations which may consist of

signal, clutter and noise , where the signal and clutter are bandlimited in

mutually exclusive bands (see Fig. 1(a)). The problem then is to obtain

estimates of extrapolated signal and clutter outside their observation

interval.

Let the Bandpass operator B operate on the signal in the signal band

±[f2,f3] and the low pass operator L 
ope rate on the clutter in the clutter

band

We introduce operator notation :

s: original signal (infinite vector)

C: clutter (infinite vector)

n : noise (mx l vector)

y: observed samples (rnxl vector)

B: bandpass operator (infinite matrix )

I: Low pass operator (infinite matrix) 
•

S: Selection operator (mx”)

The matrices B and I are Toeplitz matrices determined from the

sequences {bk}~ ~~~ 
respectively, as the Fourier inverses [see Fig. 11],

(3 sin (2~Tf3k) - sin(2lTf2k)
bk = 2J cos(2’~fk)df = itk (116)

B = (b
1~~

}

S.
,

- — -~~~~~~~~~ ---
---

~.--- r~~~~~~~~~~~~~~~~~_~~~~~~~ ’ - : _  - - 
- 

- - ~~~~~~~~~~~ ~~~~~~~~~



sin(2nf1
k)

tk = 21o 
cos(2iifk)df = 

lTk 
(117)

I =

The selection matrix S, (Introduced earlier also) is defined as

S = [0 Im 0) (11 8)

where is an m x m identity matrix. The matrix selects the observed m

samples from an infinite size vector. The observation vector can be

written as

y = Ss + Sc + n . (119)

Since s and c are bandlimited signals they satisfy Bs = s and Lc = C.

Thus , we can write

y SBs + S L c + f l  (120)

y = S[B I] 
~i 

+

cj

~~H x + n  (121)

rs
when H S[B L] afld x ILc

Now the problem is to find an estimate of x, given y. In the

absence of clutter (c 0), the problem reduces to the extrapolation problem

considered earlier. The solution 2 obtained by minimizing the least

squares norm

= II y— Hx 11 2

is given by

t

’

~~ _ _ _ _
— ‘— — —. —-— ——---—-- —- — - -—- —r-

~~,~~~~~~ii,~
— 

~~~~~~~~~ ~~ — ~
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= (H
1H)~~ H

1’
y 

*

where (H TH)~~~ HT is the pseudo inverse operator of H provided (HTHY 1 ex ists.
However, thi s is not the case as explained bel ow.

The infinite matrices 8 and I are Toeplitz and are diagonal ized by the

Fourier transform operator. Therefore,

FEB LJFT = \ (f)

where F is the Fourier transform operator and FT is its conjugate transpose

and \ (f) is as shown in figure 11.

This also implies that the operators B and L are idecnpotent i.e.,

B2 = B and 12 = I. From Fig. 11 the operator [B I) is singular which in

turn implies
T

HTH = 
B

T 
S
T
S[B 1] (123)

I

is singular , and has a rank of atmost in .

A number of approaches are once again possible to find the pseudo

inverse of H , as discussed in the previous section . Here we consider a two

step gradient method .

An example of a two step gradient method where initial convergence Is

extreme ly rapid is the Conjugate Gradient Method [12,13] which is based

on the following ideas. Let Q denote the matrix H
TH (which has dimension

2Nx2N to extrapolate the signal and clutter each to N points).

Let ~- 
= 2N. A set of 9- vectors {d~

} are conjugate if

d 1
TQd~ = 0 , i ~ 

j

- - -- .- — -- -— ---- -----~~ .- - - — -- -.. - -_ --- .- - - — —
4

~~~~~ 

_  
_  

S.

-————— _ .
~~~

,... 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .- 
- 

- ~~~~~~~~~~ -
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Since Q Is syninetric a set of such vectors exist and forms a basis. The

solution vector can, therefore, be written as

- 

= ~ cz~d1

The scalers (ci
1
} and vectors {d~} must be found in a computationall y

feasible way. One way is via the algorithm [13]

‘~k+l — k
X = X  

~~ kdk

—C Td 
(124)

k k= 

d
k
TQdk

where the {dk} are generated by

dk+l = _ C
k+l 

+ 6kdk
(125)

c T d
6k d TQd

The vectors {Ck
} are the gradients of J at each iteration

Ck 
= Q~

k 
- HTy = C k_ l + 

~k-l~~k-l 
- (126)

and the initial conditions are

= y and d1 
= C1. (127)

The minimum is achieved in at most 9- steps, and the method is step for

step better than a gradient method. A very attractive feature of this

I., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _
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algorithm is that large reductions in error are achieved in the

firs t few steps [13].

Looking at the computations involved , we see that except for the single

matrix vector product QdkI all vector operations involve only Q. multiplica-

tions. Hence , the order of computations for each iteration is 4niN .

(Note tha t Q is composed from Toeplitz matrices, so that advantage of FIT

method could be taken to evaluate Qdk.) When Q is highly ill -conditioned ,

or singular , the i terations must be stopped at an opt imum point . Alter-

natively , we may add a small value ~ of the order of l0
6 to each diagona l

term of Q. This minimizes convergence ambiguity due to ill-conditioning

and stabilizes the iterations greatly.

S. 

~~~~~~~ 
--
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VI. A MEAN SQUARE EXTRAPOLATING FILTER

With the formulation and notation of the problem of Section V , we
+have

y H x + n  . (128)

Now we assume tha t x is a random Gaussian vector whose autocorrelation

matrix is denoted by R
~
. The m inimum mean square estimate of x is given

by the Wiener filter as*

= [E(xy T)][E(yy T )]~~y ~ Gy . (129)

Assuming noise to be independent of x , it is easy to obtain

G = RxH
T(HRxH

T+Rn)
_ l

(130)
R~ = E ( n  nT)

which Is equ ivalent to the equations

(HR HT+R )z = y

= R~H~z

= E[x T) = E[(~ ) ( s TcT )]

= ~~~ 
E(sc T) 

. (140)

[~~
(cs~ ) E(cc T)

~
- We note here the similarity between the extrapolation problem and the
restoration problem in image processing [17). For example , an image
blurred by a low pass type operator H and contaminated by additive noise
would give rise to an equation similar to (128).

* Here E is the expectation operator.

I 

. 

- -- - - —--—- - 

-
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If signal and clutter are uncorrelated (non overlapping power spectra)

rE(ss T ) o 1R
~ 

= [~ E (cc T) j (141)

In the special case when the noise and clutter are absent, we have

H = B

R~ = 0 -

Thus , we have z = (SBR
~
BTST)

~~
y. Since s(k) is a bandlimited

random process, we must have

BRxB
T R~

which gives

= R S T(SR xS
T)~

1
Y -

In the worst case, when we do not know Rx~ 
we can simply assume the

power spectrum of x(k) to be flat in its bandwidth so that

Rx = B

and 2 = BsT(SBST)~y where (SBS
T)+ is the nseudo inverse of (SB,ST). This is

the same result as obtained by Cadzow [See Eqn. (95)]. Thus Cadzow ’s one

shot method is a special case of this extrapolation filter. In the

presence of noise , the extrapolation filter estimate is

= BST(SBST+R)~~y

where (SBST+R~)
_ l 

exists and is unique.

- - -- 

- .  

- 

S.

- 

~- _ m ~~~- - ~~~~~~~~~~~- ~~~~~~~~~ ‘ - - -- - - - - -
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VII. A RECURSIVE EXTRAPOLATION ALGORITHM

In this section we present a recursi ve least squares algorithm based

on Kalman filtering techniques where the extrapolated signal estimate

is updated recursively as a new observation sample arrives .

Based on the formulation of the problem as in section V we rewri te

equation (121):

y = H x + n

The kth C ~ervation can be written as

= hkx ~ “k 
and k=O ,2,... ,m-l (142)

where h~ is the k
th row of H and nk is zero mean white Gaussian noise.

The state equation for the unknown extrapolated vector x can be written

as

Xk+1 = X
k 

(143)

with initial condition x1~ = x , where x is a random vector whose covariance

is given by

P cov(x0) = cov(x) = H ~ 
{ctk Q } (144)

Since H is idempotent i.e. HH = H , it is easy to verify that

L±~~~~~~~~~~
_ _

S.- 4
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_________________ .4
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h~h9- 
= 

~ k-~ 
(l45a )

Hh k = h
k (145b)

and

h~H = h
k
T 

(l45c)

The Kal man filter associated with equations (142)-(144) is the recurs i ve

least squares filter (e.g. see Nahi [16))

Xk+l 
= X

k 
+ g~ (y~-h~~~). 2~ = 0 (146)

whe re 2k is the kth estimate of x and is the Kalman filter gain.

The associated Riccati equation is

~k+l 
= (I - 

~~~
— P

k
h
kh~

)P k ( I  - 
~~
- h~h~P~) + 9k ‘n

2(k)g
~ 

(147)

and

C
k 

= h
~
P
k
h
k 

+ o 2(k), c~
2(k) E[n

k
2i (148)

= 
~~ 

P
k
h
k (149 )

Equation (147) then reduces to

S.

-
L - —.~----- -~-- - -—- - -----— -~~~~- .~~ —==~~~~~~~ 

--
~~~~-~~~- - - --~~~~~~~

-- -
~~~

------- - — - --- — - -
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~k+l 
= 

~k 
- 

ck 
P
k
hk

h
~
Pk (150)

Lett i ng 
~k 

H + 
~k’ 

and using equations (145),

~ k+l = W
k 

- 
~~

_ (I+
~
Pk )hkh~

(I+ .Pk) (151)

De fin i ng

~ k , I 
= 

k~ 
(l52a)

and

= 
~k ,k~

1 (152b)

it follows from (151) that

k+l ,~ 
= 

k ,~ 
- 

C
k 

H k  
+ 

k ,~ 
](hk 

+ - 

k ,k );k=0 , . .  .,ni- 1 ;~~k ,k+i , .. .  ,m- 1; (153)

From (149) it follows that 
*

= — (h
k
+
~.k

) (154)

From (145), (148) and (152), we get

ck 
= I~~~~+ ‘p

2(k) + 
~k,k 

(155)

4 
- -

t S.

~~~~~~~
-_ _- ,,

~~~ ~~~~~~~~~~~~~~~ L~~~~~~~~~~~~~ -~~ ~‘2 - 
- -- -~~~--- ~~ — —
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Assuming that we are bas ing our extrapolation on in observed sample values and

* that we are extrapolating to N points , the maximum storage required is mN.

The major computation is in the calculation of the 1 k Q  (153) and it is

easily seen that the order of computations invol ved is —0(m2N).

4
• - 

- S.

‘5 - 
—~~ — ~~~~~~~~~~~~ - —
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V III . EXAMPLES, RESULTS AND COMPARISONS

We will now consider several examples to study the performance of

the foregoing algorithms . In Example 1 below , we consider the observations

to be of the form 
-

,y(k) = s(k) + c(k) + n (k) , - M < k c M

where c(k) is the bandlimited clutter sequence , and s(k) is a band limited

signal whose band limi ts are known , i.e. ,

S(~i) = O ,w

n(k) is a zero mean white noise process with variance o~
2.

In examples 2-9 the observations are of the form

y(k) = s(k) + n(k) ; —M k N

The following examples have been considered.

la. y(k) = s(k) + c(k) + n(k) ; — 8 ’ - k  ‘- 8

s(k) = 1.69sin(.39irk)

W
i 

= O.382ii

= 0.397’-

clutterband : = [O,O.16~ ]

°n
2 = 0.13

SCR = -4.1dB , SNR = 19dB

lb. y(k) = s(k) + c(k); - 8 < k < 8

=

w
2

- .4ii

I 
.

_ _ _ _ _  

S.

1_ ---~~~~
-

~~~~~~~~ 
- -~~~~~~~~-~~~~~~~~~~ +-~~~~~~~ - - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _
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= .875w2

s(k) = l.6gsin(w5k) 
*

n

2. s(k) = sin(.99~~k) + sin(.85w2k)

= 0

=

= 27T/50

3. s(k) = sin(.99w2k) + sin(.85w2k)

~
2 o

n

=

The above, two cases have the same signal , but the knowledge of band-

limits is different. In the following cases we have other signals with

different band limits . In examples 8 and 9 we have additive noise also.

4. s (k)  = sin( .365 irk) + sin( .385 iik)

2
a = 0n

=

=

5. s(k) = sin(.365rTk) + sin(.385~ik)

=

=

2 = 0

4 
- 

- - —- — — ~~~~~ --—-, -. ~~~~ ‘- - — - - — — — — - — —

_ _ _  

0~

c____ _ _ _ _
~~ 

--
---- --—--—-- — - 

_ _
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6. s(k) = sin(.985w2k) + sin(.975w2k)

=

=

2
0 = 0
n

5 m w  k
7. s(k) = 0.1

U)l 
= 0

5 = .111

2an 
= 0

5 m w  k
8. s(k)  = ~ 

2
Ui

= 0

= O .ln

E(n(k ))  = 0, a 2 = 0.01

SNR = 7.4dB

* 
9) s(k) = sin(.99w2k) + sin(.85w2k)

w
2 

= 2ii/50

E(n(k ))  = 0

= 0.1 , SNR = 21 .6dB

In example la, application of an eighth order autoregressive model to

the given data yields the spectrum shown in Fig 1(e). The estimate seems

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~ -- - -—  _ _ _ _
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to be completely dominated by the clutter. A 256-point DFT-sDectrum

estimate of the data is shown in Fig. 1(f), and clearly, this also is

most unsatisfactory . Figures 1(g)  and 1(h) show the signal extrapolated

to 199 points by the Conjugate Gradient Algori thm (using only 10 itera-

tions) and the Mean Square Extrapolation Filter. Figures 1(i) and 1(j)

show the corresponding results for the extrapolated clutter. The Maximu m

Entropy method is applied to the extrapolated signal and extrapolated

clutter separately using a fi fteenth order model . Fig. 1(k) and 1(9-) show the

extrapolated signal spectra using the Conjugate Gradient Al gorithm and the

M.S. Extrapolation filter. They yield the signal peak at the correct

location . Figures 1(m) and 1(n) show the corresponding clutter spectra .

In example lh, the signal bandwidth is increased from the previous case.

The actual spectra of signal and clutter are shown in fIg. 2(a). The FIT

spectrum using 256 points is shown in fig. 2(b), and the Maximum Entropy

Spectrum using an eight order mode l in fig. 2(c). After extrapolating signal

and clutter to 125 points each , using the conjugate gradient algorithm their

respective spectra a re calculated by the Maximum Entropy Method using 15th and 12th

* order models as shown in figures 2(d) and 2(e) respectively. Figure 2(d) shows

a peak at the signa l frequency along with two subsidiary peaks which are seen

to occur exactly at the fi lter cut-off frequencies. Figure 2(f) shows the

FIT spectrum of the extrapolated si gnal. We note that this is a much better

estimate than shown in Figs. (2b) or 2c).

In examples 2-9 we consider eithe r signal only or signal with additive ,

white , Gaussian noise .

4 - —  — - — — — - - ---. .- - - 
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The observed data consists of 17 samples and it is extrapolated to

199 points using

1. Papoulis ’ iterative algorithm

2. the matrix Ec
3. the matrix Ec after it has been stabilized

4. the conjugate gradient algorithm

5. the M.S. extrapolation filter for Examples 8 and 9 when the signal

contains noise.

Extrapolation using Papoulis ’ algorithm was done with 30 iterations and with

10 iterations using the conjugate gradient algorithm.

Since all the al gorithms ultimately yield a minimum norm least-squares

solut ion , we expect equivalent results from all the al gor i thms . F igure 3(c)

shows the extrapolation using Papoulis ’ algorithm , and is seen to give a

reasonable result. Figure 3(d) shows the extrapolation via the matrix E~
.

Afte r a stabilizing diagonal term of the order of lO
_6 

is added to the matrix

(SLST), the extrapolation obta ined is as shown in figure 3(e). A close

examination of figures 3(a), 3(d) and 3(e) shows a slight phase shift

of the siqnal 3(d). This may be attributable to the ill-conditioning

o f (SLST). Figure 3(f) shows the extrapolation by the Conjugate Gradient

method after 10 iterations . This algori thm gives a slightl y inferior

extrapolation compared to the others in this case , and perhaps needs a few

more iterations . In later examples , however , it is seen that 10 iterations

are sufficient.

In the set of figures 4, we have the same signal and observations , but

the uncertainty in bandw idth is increased over the previous case. The

relatively degraded extrapolations achieved now show that there is a

trade -off between bandwidth uncertainty and extrapolation length , which is

to be expected. The set of figures 5, 6, 7 lead to similar conclusions for

— — — --——— -- .—.- -
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signals wi th differing frequencies and different bandwidths .

In the set of figures 8, we consider a sin x/x type of signal. The

phase distortions of the extrapolated estimate in figure 8(d) dramatically

illustrate the ill-condit ioned nature of (SLST). In the above examples

there was no noise in the observations . Now , we consider (examples 9 and

10) signals in additive zero mean , white Gaussian noise at the SNR 7.4dB ,

21.6dB respectively. The results show that the Mean Square Extrapolation

fi l ter , wh ich takes noise statistics into account produces the best

extrapolation (Figs. 9(g) and 10(g)) among the algorithms considered

experimentally. Similar results are to be expected form the recurs i ve

extrapolation algorithm of section V II. Further simulations are required

to study the numerical behavior of this algorithm.
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IL CONCLUSIONS

The problem considered here was to effectively discrimi nate the

signal from the interfering clutter , based on a small nunter of observation

samples . Conventional techniques like the DFT and Maximum Entropy Methods

are seen to yield poor results .

Given that the signal and clutter are band limi ted in mutually exclusive

bands, a good method o~ improving resolution is to extrapolate the signal

outside the observation interval and then estimate the spectrum. Though

continuous time band limi ted signals can be extrapolated exactly outside the

observation interval , this is not possible in the discrete time case. In

fact, in this report we have proved that the discrete extension of the

continuous algorithms leads to an extrapolated signal which is optimum

in a minimum norm least squares sense.

We have introduced some new algorithms for signal extrapolation , viz.;

a) Conjugate Gradient Algori thm

b) Mean Square Extrapolation Filter

c) Recur sive Extrapolation Fi lter -

d) An Extrapolation Algori thm via Discrete PSWFs .

The Conjugate Gradient method is an iterative technique which has

a rapid Initial rate of convergence and hence has an obv ious advantage

over Papoulls ’ al gorithm which has a linear rate of convergence . The Mean

Square extrapolation filter is a non-Iterative method that takes noise

statistics Into account and simultaneously filters the clutter from the

signal . Cadzow ’s one shot method is seen to be a special case of this

filter .

• ---~~~ —~~~~~~~~~~~~
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• Further experiments have t~ be performed for the Recursive Extrapolation

fi l ter (which also considers noise statistics) and for extrapolation via

Di screte PSWFs . In prac ti ce , extrapol ation is achieved only to a limi ted

extent beyond the observation i nterval and depends on the signal bandwidth

uncertainty . he larger this bandwidth uncertainty , the smaller the length

to wn~ch the signal can be extrapolated . Al though , in the absense of noise ,

all algorithms yield a minimum norm least squares sol ution , their implementations

are different and lead to different truncation errors . Such error analysis

and other numerical features for the extrapolation problem need further

work. Our experiments show that whatever the uncertainty of the signal

bandwidth miqht be , extrapolation of the sigral fol lowed by a sp’~ctra l estimation

improves the spectral estimate.
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Tab le 1

METH D COMPUTATIONAL. GENERAL0 COMPLEXITY COMMENTS

MAX. ENTROPY or pxp Toepl itz Eqns . 1. Simple Iine&r Eqns., easy to
Autoregressive (Burg, + FFT operation implement .• Parzen &others) 3p2 + O(NlogN); 2. Good results for all-pole spectra .

p<<N 3. Fails in the presence of noise and
clutter-unless a large number of

• observation samples are available.
4. Order of the model difficult to

select.
5. Performance improved by applying it

on extrapolated signal .

Continuous PSWF Very large . Func- 1. For extrapolation of bandlimited ,
(Slepian et al.) tions extremely continuous signals; existence guaran-

2 difficult to cal- teed.
culate 2. Extremely difficul t to implement.

• 3. Noise sensitive
4. Useful in establishing existence ,

uniqueness & other properties.

Iterative O(4Nlog2N) real 1. Easy to implement
Extrapolation operations per 2. Is a gradient algorithm with

3 (Papoulis) iteration linear converqence. Requires a large
number of iterations and FF1
operations at each iteration .

3. Does not take into account noise
statistics .

Extrapolation If observed data 1. L does not exist. EN exists .
Matrix , L 2 p4+1 and extrapo- 2. A large (NxN) ill-conditioned
(Sabri and lated length N matrix has to be inverted .
Steenaart) then - 0(N3) to in- 3. Noise sensitive . Can be stabilized by

vert NxN Matrix adding a diagonal term to G.
+1/2(2M+1)(N-2M-1) 4. Noise statistics not considered.
operations to find
extrapolated signal

Ec (Cadzow ) If observed data = 1. Easy to implement, if E~ 
is stable.

m pts extrapolated 2. An ill-conditioned matrix (mxm
5 to N pq, Toepl itz) has to be inverted.

O(3m2+m’4inN) 3. NoIse sensitive . Can be stabilized .
4. Noise statistics not considered.

Conjugate — 0(2mM) operations 1. Easy to implement
Gradient (Jam & per iteration 2. Extremely rapid initial rate of
Ranganath ) convergence

6 3. Small number of i teration required
in practice

4. NoIse sensitive , but can be stabilized
5. Noise statistics not considered

~~ 
_ _  _ _  _ _  
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Table 1 , continued

COMPUTATIONAL GENERA LMETHOD COMPLE X ITY COMMENTS

Mean Square (3ni2+m2+mN ) 1. Easy to implement
Extrapolation operations . mN 2. An mxm Toeplitz matrix has to be
Filter (Jam & operation once inverted .
Ranganath) Filter gain has 3. Takes Noise statistics into account

• been computed . 4. Reduces to Ec in the noise free case.

Recurs i ve Extra- N operations 1. Easily implemented , updates extra-
8 polation (Jam & per data point , polated estimate as new data arrives .

Ranganath) if gains are pre- 2. Takes noise statistics into account.
computed .

Discrete PSWF Requires solving 1. More difficult to implement than
Singular Value for eigenvalues (7) or (8). Easy to implement once
Expansion and eigenvectors the eigenvectors have been computed
(Papoulis , Jam & of a (2M+l)x(2M+l ) 2. Noise statistics not considered .

• Ranganath) Toeplitz matrix , a 3. Accuracy depends on the accuracy of
low pass filtering eigenva lues and eigenvectors .
operation and a
finite series

________ _____________________
j  expansion .

___ - I
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